If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+315t+1000=0
a = -16; b = 315; c = +1000;
Δ = b2-4ac
Δ = 3152-4·(-16)·1000
Δ = 163225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{163225}=\sqrt{25*6529}=\sqrt{25}*\sqrt{6529}=5\sqrt{6529}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(315)-5\sqrt{6529}}{2*-16}=\frac{-315-5\sqrt{6529}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(315)+5\sqrt{6529}}{2*-16}=\frac{-315+5\sqrt{6529}}{-32} $
| 2z^2+4z+14=0 | | 2a(-8a+3a=) | | -16t^2+315t=1000 | | X+.05x=136.50 | | 8x^2+5x=2 | | 1.05x=136.50 | | -16t^2+315t-1000=0 | | 4e+2=18 | | 8.3+z=131.7 | | 2/e=5 | | 4.4x-16.22=2.7 | | a+8.3=20.5 | | 30+x=89 | | 3(x+1)-1=3(x-4) | | 90=(3x+2)+(x+12) | | 2.7x-13.49=4.6 | | c=23=68 | | 5y+3+3y+7=12y-10 | | -6(1-x)=-20-x | | 3.3x-17.32=7.1 | | 9x+4x+10+9=180 | | -11-5x=2(3x+11) | | 24-10x=4 | | 1000/5=x/12 | | 17=-2x+3+4x | | -6m+5m=5-2m | | -16-3p=6p-p | | x=x+2x | | -5x+26=4(x-7) | | 97=7+-5z | | (9x-4)(7x+6)=0 | | 9(q-99)=-9 |